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STUDIES ON OZONE BLEACHING. I. 
THE EFFECT OF PH, TEMPERATURE, BUFFER SYSTEMS 

AND HEAVY METAL-IONS ON STABILITY OF OZONE I N  AQUEOUS SOLUTION* 

G. Y. Pan**, C.-L. Chen, H.-m. Chang and J. S. Gratzl 
Department of  Wood and Paper Science 

North Carol ina S t a t e  Universi ty  
Raleigh, North Carol ina 27695-8005, USA 

ABSTRACT 
Ozone was found t o  be reasonably stable at  moderately l o w  pH 

( s  pH 3 )  and ambient temperature i n  acetic, s u l f u r i c  and n i t r i c  
a c i d  so lu t ions .  I n  these  cases, t h e  exac t  k i n e t i c  o rde r  o f  ozone 
decomposition could not  be e s t ab l i shed .  However, second o rde r  
w i t h  r e spec t  t o  ozone was p re fe r r ed  on the basis o f  statistical 
a n a l y s i s  of  t h e  data .  A t  pH 3,  t he  ozone decomposition rate was 
found t o  be s l i g h t l y  higher  a t  15OC and moderately higher  a t  35OC 
than at  25OC for a l l  t h r e e  bu f fe r  systems. A t  lower concen t r a t ion  
l e v e l  ( s O . 5  ppm), only Co(I1) ion enhanced decomposition of  ozone 
i n  s u l f u r i c  a c i d  so lu t ion  a t  pH 3 and 25OC. I n  c o n t r a s t ,  a t  t h e  
higher  concentrat ion l e v e l  ( 'L 3.0 ppm), Ca(II), Cr(III), F e ( I I ) ,  
F e ( I I I ) ,  C o ( I I ) ,  N i ( I 1 )  and Cu(I1) i o n s  were found t o  c o n t r i b u t e  
t h e  decomposition of ozone; t he  effect of Co(I1) and Fe ( I1 )  i o n s  
was very pronounced as compared t o  the  o t h e r  ions.  Using acetic 
acid in s t ead  o f  s u l f u r i c  a c i d  as bu f fe r  reagent r e s u l t e d  i n  
d r a s t i c  and moderate reduct ions o f  t he  ozone decomposition cata- 
lyzed by Co(I1) and Fe ( I1 )  i ons ,  r e spec t ive ly .  These i n d i c a t e  
t h a t  a c e t i c  a c i d  acts as r a d i c a l  scavenger f o r  hydroxyl radical as 
pos tu l a t ed  by Walling et  a l .  Thus, t h e  d r a s t i c  i n c r e a s e  i n  t h e  
ozone decomposition i n  the  s u l f u r i c  a c i d  s o l u t i o n  with the pre- 

~~ 

Dedicated t o  Professor  Joseph L. McCarthy on h i s  70th bir thday.  
** Present  Address: I n t e r n a t i o n a l  Paper Company, Tuxedo Park, New 

York 10987 

A prel iminary r e p o r t  on t h e  r e s u l t s  of  t h i s  work was given at  "The 
Ekman-Days 1981", I n t e r n a t i o n a l  Symposium on Wood and Pulping 
Chemistry, Stockholm, Sweden, June 9-12, 1981. 
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368 PAN ET AL. 

sence of  Co(I1) o r  Fe ( I1 )  i o n  is caused by f r e e  radical chain 
r eac t ions  i n i t i a t e d  by free radicals produced i n  the process.  

Increasing concern about t he  environment i n  the  past decades 

has led t o  t h e  development of less p o l l u t i n g  a l t e r n a t i v e s  i n  pulp 
bleaching processes.  Research has p r imar i ly  been focused on sub- 
s t i t u t i n g ,  p a r t i a l l y  o r  t o t a l l y ,  c h l o r i n e  and chlorine-based 
chemicals with oxygen and oxygen-based compounds, such as ozone 
and hydrogen peroxide. 

Ozone was suggested f o r  bleaching of wood pulp a s  e a r l y  as 
1871' bu t  high production costs, excess ive  consumption and fre- 
quent uncon t ro l l ab le  l o s s e s  i n  pulp s t r e n g t h  have so far prevented 
its a p p l i c a t i o n  on a larger soale. 
t o  its use as a bleaching agent  is obviously its moderate 
s t a b i l i t y  i n  aqueous so lu t ions .  Ozone is a r a t h e r  s t rong  and 
highly s p e c i f i c  oxidant.  It has, however, a tendency t o  decompose 
i n  water, generat ing,  among o the r s ,  some very r e a c t i v e ,  h igh ly  
unse lec t ive  ox id iz ing  species. 

One of  the major impediments 

The chemical i n t e r a c t i o n s  between ozone and water are esta- 
bl ished i n  numerous k i n e t i c  s t u d i e s  on ozone decomposition and. i n  
s t u d i e s  on t h e  oxygen exchange r a t e ,  
p r a c t i c a l l y  the e n t i r e  pH range a t  temperatures between O-6O0C. 
The decay is catalyzed by base ('OH) and is expressed i n  t h e  

following general  rate expression: 

The i n v e s t i g a t i o n s  cover 

The r eac t ion  order  "b" w i t h  respect t o  hydroxide ion concen- 
t r a t i o n  v a r i e s  from 0.36-1.002'6 and "an for ozone is 1 ,  1.5 or 
2 . 0 ~ , 3 , 7 , ~ ,  depending on the pH. 

pancies among rate cons t an t s  and r e a c t i o n  o rde r s  reported i n  t h e  

l i t e r a t u r e .  The major causes f o r  d i sc repanc ie s  have been a t t r i -  

However, t h e r e  are g r e a t  dbscre- 
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OZONE BLEACHING 369 

buted t o  the  presence of  impur i t i e s7 ,  d i f f e r e n c e s  i n  a n a l y t i c a l  
procedures3 and f a i l u r e  t o  apply s t a t i s t i c a l  methods i n  ana lyz ing  
experimental  data . 8 

Although there is no agreement as t o  the i n i t i a t i n g  s tep,  

both hydroxyl and perhydroxyl radicals have been g e n e r a l l y  
accepted as chain carriers i n  t h i s  process  *,399. 
of  radical r e a c t i o n  p a t t e r n s  was provided by tracer s tud ie s” .  
Recently,  Hoigne e t  a1 11-’3, were able t o  show that hydroxyl 
radicals are generated i n  t h e  hydroxide ion  catalyzed decomposi- 
t i o n ,  and t h a t  about 0.5 mole of  hydroxyl radicals are produced 
p e r  mole of  ozone a t  pH 10.5. 

Further  support  

The o b j e c t i v e s  of  t h e  present  work were twofold: (a )  t o  

e s t a b l i s h  reliable k i n e t i c s  on t h e  decomposition of ozone i n  
aqueous s o l u t i o n  and the effects of t r a n s i t i o n  metal-ions and 
radical scavengers on t h e  r eac t ion ,  and ( b )  t o  e l u c i d a t e  possible 
mechanism f o r  these reac t ions .  Fundamental information on ozone- 
carbohydrate and on ozone-lignin r e a c t i o n s ,  e s p e c i a l l y  i n  aqueous 
medium, is rather l imited.  Moreover, many d i sc repanc ie s  and con- 
fusion still exist at the present on the kinetics of ozone decom- 

position in water. 

our own basic data for the kinetics of the ozone-water system before 

embarking on i n v e s t i g a t i o n s  of  ozone-carbohydrate r eac t ions .  

It is, therefore, necessary to first establish 

RESULTS AND DISCUSSION 

Effect of pH and Buffer Systems 

The experiments were conducted w i t h  double d i s t i l l e d  water 
and restricted t o  the pH range from 2-7 and temperatures  from 15- 

35OC. 
reliable and reproducible  k i n e t i c  data and whenever s u i t a b l e ,  t h e  

data were subjected t o  s ta t is t ical  ana lys i s .  The bulk o f  the data 
was c o l l e c t e d  from runs a t  25OC, as compiled i n  Tables 1 and 2 and 

Mult iple  runs were performed a t  each pH l e v e l  to  gene ra t e  
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i l l u s t r a t e d  i n  Figure 1. 

t h a t  the  decomposition r eac t ions  were either first, first and a 
half  or second o rde r  with respect t o  ozone concentrat ion.  
i n  most of t he  cases we were not able t o  e s t a b l i s h  c l e a r l y  t h e  

r e a c t i o n  o r d e r ,  we have ind ica t ed  our  preference based on the  beat  
data f i t .  There were, f o r  i n s t ance ,  a l s o  cases where t h e  data f i t  

two k i n e t i c  o rde r s  equa l ly  well. 
exact  k i n e t i c  o rde r  have been r epea ted ly  reported2 1 9 8 .  

A d e t a i l e d  a n a l y s i s  o f  the data revealed 

Since 

D i f f i c u l t i e s  i n  de f in ing  t h e  

The rate cons t an t s  l is ted i n  Table 1 were computed from data 
obtained from experiments carried o u t  t o  80 percent  completion. 
T h i s  was achieved i n  about 100 minutes i n  runs o f  pH 6-7, whi le  a t  
lower pH l e v e l s  (around pH 31, it required about 600 minutes. As 

expected, rate cons t an t s  obtained from short- t ime experiments up 
t o  100 minutes (Table 2)  differed somewhat from those obtained 
from long-time experiments (Table 1 ) .  Closer i n spec t ion  of  t h e  

rate da ta  i n  Table 1 and Table 2 i n d i c a t e s  t h a t  bu f fe r  systems do 
have some effect on ozone decomposition. Comparing, for i n s t a n c e ,  
t h e  acetic, s u l f u r i c  and n i t r i c  acid buf fe r  systems a t  pH 3.5 
shows t h a t  t h e  acetic acid buf fe r  is s u p e r i o r  t o  t h e  o t h e r  two i n  
s t a b i l i z i n g  ozone. For t h e  decomposition of  ozone i n  acetic acid 

so lu t ion  a t  pH 3.5 and 25OC1 a second order rate cons t an t  is 
determined t o  be 6 mole'' L min" which is 505 smaller than those 
obtained i n  t h e  o t h e r  two acid s o l u t i o n s  under t h e  same condi- 
t i ons .  Cautions should be taken, however, i n  using t h e  data 
obtained i n  the acetic acid buffer  system because (a) t h e  data f i t  

t o  t h e  second o rde r  k i n e t i c s  i n  t h i s  case is not  as good as those 
i n  the  o the r  two systems and (b )  t he  r a t e  da t a  tend t o  reflect 
more of those data p o i n t s  taken i n  the  later phase of t h e  r e a c t i o n  
when the decomposition rate i n  the  a c e t i c  acid system becomes much 
lower than those i n  t h e  o t h e r  two systems. A p l o t  of  ozone 
concentrat ion versus time f o r  t h e  first 70 minutes of r e a c t i o n  i n  
s u l f u r i c  and acetic acid s o l u t i o n s  a t  pH 3 r e v e a l s  t h a t  t he  

d i f f e rence  i n  t h e  decomposition rate is a c t u a l l y  small a t  15 and 
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Figure 1. Effect o f  pH on Ozone Decomposition a t  25OC. 

25OC (Figure 4 r e fe rence  cu rves ) .  
d i f f e r e n c e  e x i s t .  On the o t h e r  hand, when t h e  data f i t  is good as 
those  i n  t he  H2S04 and HN03 buf fe r  systems, the agreement o f  rate 
cons tan t s  is e x c e l l e n t .  The rate c o n s t a n t s  a t  pH 5 i n  acetate 
b u f f e r  system and i n  n i t r i c  acid s o l u t i o n  is a l s o  c l o s e .  
dependence is summarized i n  Figure 2 where t h e  rate c o n s t a n t s  are 

p l o t t e d  versus  pH, showing a r ap id  i n c r e a s e  from pH 4 t o  7. 

Only a t  35OC does a n o t i c e a b l e  

The pH 
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Effect of Repeated Ozonization 

The economic f e a s i b i l i t y  of low or medium consistency ozone 
bleaching i n  the  fu ture  may very w e l l  to a l a rge  ex ten t  depend on 
t h e  poss ib i l i t y  of recycling the  bleach ef f luents .  The problem 
one can an t i c ipa t e  is t h a t  i n  the  course of ozone decomposition, 
radical species are generated which i n  turn acce lera te  the  decay 
of ozone, resu l t ing  i n  excessive ozone consumption. On t h e  o ther  
hand, t h e  radical species r eac t  not only w i t h  organic material but 
a l s o  with inorganics as well. It is, therefore ,  conceivable t h a t  
repeated use of the  e f f luen t s  could r e s u l t  i n  d i f f e ren t ,  presum- 
ably enhanced, decomposition rates i n  each of the  subsequent 
ozonization stages.  Accordingly, experiments were designed to 
simulate such systems. 
using appropriate ace ta te  buffer  or s u l f u r i c  acid f o r  pH- 
adjustment. Since ozone concentration was monitored i n  each run 
from about s i x  hours and the  time elapsed between ozonizations was 
12 hours (overnight),  the react ion was ac tua l ly  being followed f o r  
a period of several  days (Table 3).  
While a t  pH 5 the decomposition rate increased by a f ac to r  of 7 
between the first and the fourth steps t o  a l eve l  as high as t h a t  

observed i n  s ing le  runs car r ied  out a t  pH 7,  only a two-fold 
increase was noticed at t h e  fourth s t e p  a t  pH 3, amounting t o  only 
about a fourth of the  r a t e  of t h e  above reference. Experiments on 
shor t e r  ozonizations (10 minutes) and shor t e r  periods between 
treatments ( 6  hours) conducted i n  s u l f u r i c  acid so lu t ion  a t  pH 3 
showed tha t  i n  t h i s  case there  was no change i n  t h e  decomposition 
rates as a r e s u l t  of repeated ozonizatlon. 

Several  runs wen conducted a t  pH 3 and 5 

Effects of Heavy Metal-Ions and Temperature 

The experiments were conducted i n  su l fu r i c  acid solut ion a t  
pH 3 ( su l fu r i c  acid) and room temperature a t  two l e v e l s  of metal- 
Ion concentration, namely with about 0.5 ppm (0.009 mM) and about 
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376 PAN ET AL. 

TABLE 3. The Effect  of Repeated Ozonization on Rate Constants 

1 1/2 order 2nd order rate 
Ozonization rate constant constant 

System PH Step* (mole-l/2 P 112 min-1) (mole-' P min-1) 

AcOH + AcONa 5 1 st 0.23 
2nd 0.46 
3rd 0.85 
4th 1.54 

3 1 st 0.09 
2nd 0.16 
3rd 0.17 
4th 0.21 

H2S04 

3 1st 
2nd 
3 rd  

m03 0.09 
0.13 
0.15 

32 
71 
136 
323 
12 
23 
24 
32 
12 
19 
23 

before the decomposition of ozone was traced. 
The buffer so lu t ions  were ozonized f o r  60 minutes i n  each s t e p  

3.0 ppm (0.05 mM) solut ions.  
t h e  other metal ions were i n  t h e  lower oxidation state such as 
Feu, Co*, Ni*  and Cr-. In a l l  cases, we used the metal sul-  
fates t o  avoid possible  complications caused by d i f f e ren t  anions. 
We a l so  included Cau, which were added i n  form of' calcium n i t r a t e  
f o r  reasons of so lubi l i ty .  

Except fo r  copper ions (Cu-1 a l l  

A t  t h e  lower l eve l  ( C  0.5 ppm) only Co* enhanced decomposi- 
A t  t h e  higher l e v e l  ( %  3 ppm) a l l  species (except t i on  of ozone. 

Ni-) invest igated contributed t o  the  decomposition of ozone as 
shown i n  Figure 3. It was found tha t  the ozone consumption was 
subs tan t ia l ly  higher than the  amount required f o r  oxidizing the 

metal ions to  the higher valence s t a t e  suggesting t h e  involvement 
of chain reaction. The t r ans i t i on  metal ion induced decomposition 
was very pronounced in the presence of Co 
the  other species investigated.  

++ ++ and Fe as compared to 

Using a c e t i c  acid instead of s u l f u r i c  o r  n i t r i c  acid for  pH 

adjustment resul ted i n  d ra s t i c  reduction i n  ozone decomposition 
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Figure 3. Effect of Metal-ions on Ozone Decomposition. 
03 : 0.4 mM; Metal-Ions: 0.05 mM; pH 3 (H2SO4); T = 
25OC. 

ca t a lyzed  by t r a n s i t i o n  metal-ions. 
acetic a c i d  caused only s l i g h t  improvements i n  ozone s t a b i l i t y .  

These obse rva t ions  can be r a t i o n a l i z e d  i n  terms o f  r e a c t i o n  
sequences proposed by Walling et  a l l 4  shown i n  the fo l lowing  
scheme : 

I n  t h e  absence o f  metal i o n s ,  

CH3COOH + H O *  - CH2COOH + H20 

1 - 2 - 
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378 PAN ET AL. 

(-) 
CH2COOH + M* -+ : CH2COOH + M+++ 

- 2 3 
(-1 
: CH2COOH + H+ CH3COOH 

Acetic acid 1 acts ac tua l ly  as radical scavenger f o r  hydroxyl 
rad ica ls  generated by metal induced decomposition of hydro- 
peroxides or ozone and is oxidized t o  r a d i c a l z .  
between M* and reduction of  2 t o  the carbanion 3, which is then 
protonated t o  the acid 1. 

various acids for pH adjustment revealed tha t  a t  lower tempera- 
tures  the s t a b i l i t y  was influenced l i t t le or not a t  a l l  by the 

acids,  with a s igni f icant  difference noticed only a t  35OC. 
presence of Co* resul ted i n  a drastic enhancement of ozone decom- 
posi t ion,  par t icu lar ly  i n  s u l f u r i c  acid solut ions.  In  ace t i c  acid 
solut ion,  t he  Co*-induced decomposition of ozone was s i g n i f i -  
cantly suppressed (Figure 4). The cobaltous ion catalyzed decom- 
posi t ion of ozone i n  s u l f u r i c  acid so lu t ion  at  pH 3 can be 
ra t ional ized by the following react ion scheme proposed by H i d 5 .  

In te rac t ion  

Studies on the temperature dependence of pH 3 so lu t ions  using 

The 

Co* + 0 + H20 - Co(OH)+* + O2 + H O *  3 
HO. + 0 - HOi + O2 

HO; + Co(OH)* - Co* + H 0 + O2 2 

3 

By oxidizing Co* t o  cobal t ic  hydroxide ion,  Co(OH)*, ozone 
decomposes t o  oxygen and hydroxyl radical ( H o e ) ,  which i n  turn  is 
oxidized by ozone to t h e  perhydroxyl radical (HOO *I .  
reduced t o  Co* by HOOD, which is oxidized t o  oxygen. 
r e s u l t  is t h e  reduction of ozone t o  oxygen and the regeneration of 
the cobaltous ion (Co*), which can i n i t i a t e  another cycle of  

The Co+++ is 
The net  
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Effect of Co2+ on Ozone Decomposition at Various 
Temperatures. 
O3 : 0.4 mM; CoS04*7H20 : 0.05 mM; pH 3 (Upper: H2S04; 
Lower: AcOH). 

Figure 4. 
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380 PAN ET AL. 

ozone decomposition react ions.  
however, the following equilibrium between cobal t ic  hydroxide and 
the  corresponding acetate ex i s t s :  

In  the presence of a c e t i c  ac id ,  

Co(OH>* + AcOH Co(OAc)* + H20 

The equilibrium constant is estimated to be 4 x 103 indica t ing  
t h a t  the cobal t ic  ace ta te  is the  predominant species i n  the  
system. 
hydroxyl rad ica l  than t h e  hydroxide complex, which seems t o  be the  

reason fo r  t he  observed s t ab i l i z ing  effect of acetic acid.  The 

decomposition of ozone i n  the presence of 0.05 mM cobaltous ion 
was found t o  f i t  the first order k ine t i c s  very well. When the  

logarithm of rate constants a t  various temperatures was p lo t ted  
against  t h e  reciprocal  absolute  temperature, a s t r a i g h t  l i n e  was 
obtained. The ac t iva t ion  energy f o r  the cobal t  catalyzed decom- 
posi t ion of ozone was calculated t o  be 64 kJ/mole and 55.2 kJ/mole 
fo r  t h e  react ions i n  s u l f u r i c  acid and a c e t i c  acid so lu t ions  a t  pH 
3, respectively.  It is in t e re s t ing  t o  note tha t  the slowdown of 
the cobaltous ion catalyzed decomposition by a c e t i c  acid is not 
the  r e su l t  of an increase i n  ac t iva t ion  energy, but rather v i a  a 
decrease i n  co l l i s ion  fac tor .  

The l a t t e r  is assumed t o  be reduced more slowly by per- 

The presence of Fe*, on the other  hand, gives rise t o  a very 
moderate enhancement only, even i n  s u l f u r i c  acid solut ions.  Using 
ace t i c  acid instead of s u l f u r i c  ac id  f o r  pH-adjustment caused only 
a slight improvement i n  ozone s t a b i l i t y  (Figure 5 ) .  The curves i n  
t h i s  f igure have taken i n t o  account t h e  absorption of ferric ion 
a t  X 258 nm where the ozone concentration was measured. It was, 
therefore ,  necessary t o  e s t ab l i sh  an absorbance-concentration 
ca l ibra t ion  curve f o r  f e r r i c  ion using ferr ic  n i t r a t e  solut ions.  
Calculation using a second order rate constant of 1.7 x lo5 1 

mole'' sec'l a t  250C16 f o r  O3 + 2Fe* + 2H+ - O2 + 2Fe+* + 

H20 indicated t h a t ,  under t h e  experimental conditions,  p rac t i ca l ly  
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Figure 6. Effect o f  Fe2+ and Fe3+ on Ozone Decomposition. 
O3 = 0.4 mM; Fe2+(3+): 0.05 mM; pH 3 (H2S04); T = 25OC. 

a l l  of  the f e r r o u s  i o n s  were converted t o  fe r r ic  ions  i n  less than 
1 minute. It can t h e r e f o r e  be  expected t h a t  immediately after t h e  

r eac t ion  starts (wi th in  1 minute),  t h e  ozone decomposition curve 
i n  t h e  presence o f  f e r r o u s  ion w i l l  be p a r a l l e l  t o  that  of t h e  

ferric ion  catalyzed decomposition of ozone. 
6 ,  t h i s  indeed is t h e  case f o r  the r e a c t i o n  i n  s u l f u r i c  acid 
so lu t ion  at  pH 3 and 25OC. The small  but  d e f i n i t e  c a t a l y t i c  
effect of the  ferric ion sugges t s  t h a t  perhydroxyl radicals are 
generated and are r e a c t i n g  with ferric i o n ,  poss ib ly  v i a  Fe+* + 

H02* - Fe- + H+ + 02. 

react wi th  ozone, t h u s  starting another decomposition cycle.  

t o  act as chain carriers i n  t h e  radical r e a c t i o n s  involved i n  t h e  

decomposition of ozone i n  aqueous so lu t ion .  The somewhat smaller 

As shown i n  Figure 

The f e r r o u s  ion  regenerated can then 

As mentioned previously,  Hop* and HO* had been pos tu l a t ed  
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OZONE BLEACHING 383 

c a t a l y t i c  effect of  f e r r o u s - f e r r i c  i o n s  as compared t o  tha t  of  
cobal tous-cobal t ic  i ons  can be explained i n  terms of the cobal- 
tous-cobal t ic  catalyzed decomposition mechanism discussed above. 
F e r r i c  i ons  and ferric hydroxide complexes are expected t o  be more 
stable than corresponding cobaltic ion8 and c o b a l t i c  complexes and 
thus ,  are less e a s i l y  reduced t o  f e r r o u s  i o n s  by perhydroxyl radi- 

cals. T h i s  is obviously due t o  the much lower ox ida t ion  p o t e n t i a l  
of  t h e  ferric ion  (0.77 v o l t )  as compared t o  t h a t  of c o b a l t i c  i o n  
(1.84 vo l t s )17 .  A s  a r e s u l t ,  the f e r r o u s  i o n  ca t a lyzed  decomposi- 
t i o n  r e a c t i o n  of ozone is much slower than t h a t  ca t a lyzed  by 
cobal tous ion. 

Both temperature and type  of  acid used f o r  pX adjustment have 
some effect on t h e  f e r r o u s  i o n  catalyzed decomposition of  ozone, 
bu t  not  as pronounced as observed i n  cobal tous ion  ca t a lyzed  
decomposition. The smaller  temperature effect i n  t he  e a r l y  stage 
of r e a c t i o n  suggests a r a p i d  r e a c t i o n  between ozone and f e r r o u s  
ion  (i.e. low a c t i v a t i o n  energy) ,  whereas t h e  small  temperature 
effect i n  the  later s t a g e  o f  r e a c t i o n  i n d i c a t e s  t h a t  t h e  concen- 
t r a t i o n  of  perhydroxyl radicals and/or its r e a c t i o n  with ferric 
i o n  a r e  not  very temperature dependent. 
by d i f f e r e n c e s  i n  acids used f o r  pH adjustment may be due t o  the 

much smaller equi l ibr ium cons tan t  of  Fe(OH)* + AcOH # 

Fe(OAc)* + HOH r eac t ion ,  1.0 x 10-7.7, as compared t o  
4 x lo3 f o r  Co(OH)* + AcOH 
ion is t h e r e f o r e  the  predominant species .  
of acetic acid on t h e  f e r r o u s - f e r r i c  i o n  catalyzed decomposition 
of  ozone is small. The equi l ibr ium cons tan t  f o r  first r e a c t i o n  
was ca l cu la t ed  from data presented i n  the  l i t e r a t u r e  18i’9. 

The smaller effect caused 

Co(OAc)* + HOH. The Fe(0H)- 
As a r e s u l t ,  t he  effect 

CONCLUDING REMARKS 

The p re sen t  i n v e s t i g a t i o n  on t h e  k i n e t i c s  o f  ozone decomposi- 
t i o n  i n  va r ious  aqueous s o l u t i o n s  shows tha t  ozone is rather 
s e n s i t i v e  t o  pH but not as s e n s i t i v e  t o  temperature and acids used 
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384 PAN ET AI,. 

f o r  pH adjustment i n  the absence of both organic  and ino rgan ic  
subs t r a t e s .  Thus, ozone is reasonably stable i n  acetic acid, 
s u l f u r i c  acid and n i t r i c  acid s o l u t i o n s  a t  pH around 3 and room 
temperature. 
t h e  o t h e r  two acid b u f f e r  systems i n  s t a b i l i z i n g  ozone. 

I n  s u l f u r i c  acid s o l u t i o n  a t  pH 3, Co* is shown to be the  

most harmful chemical s p e c i e s  t o  the  s t a b i l i t y  of  ozone a t  room 
temperature, followed by Few and Fe+*. The Co* i o n  enhances 
decomposition of ozone even a t  t h e  concen t r a t ion  l e v e l  of 0.009 mM 
( s  0.5 ppm). 
s u l f u r i c  acid s o l u t i o n  r e s u l t s  i n  drastic and moderate reduct ions 
i n  t h e  decomposition of ozone catalyzed by Co* and Fe*, respec- 
t i v e l y ,  a t  the concentrat ion l e v e l  o f  0.05 mM ( s  3.0 ppm). These 
i n d i c a t e  t h a t  acetic acid acts as radical scavenger f o r  hydroxyl 
radicals according to  t h e  r e a c t i o n  sequence pos tu l a t ed  by Walling 
et  all4. Thus, t h e  d r a s t i c  i n c r e a s e  i n  the decomposition o f  ozone 
i n  t he  s u l f u r i c  acid s o l u t i o n  w i t h  the presence of C O ~  or Fe++ is 
probably caused by free radical chain r e a c t i o n s  i n i t i a t e d  by free 
radicals produced i n  t h e  process.  A l l  o f  these imply tha t  i n  m i l l  

ope ra t ions ,  bleaching of  pulp with ozone I n  aqueous s o l u t i o n  would 
involve both free radical and i o n i c  r eac t ions .  The free radical 
r eac t ions  would be predominant over the  i o n i c  r e a c t i o n s  when 
t r a n s i t i o n  metal-ions are p resen t  even i n  trace amounts i n  the 

water used i n  m i l l  operat ions.  
on both ozone consumption and pulp q u a l i t y .  

The acetic acid b u f f e r  system is more e f f e c t i v e  than 

Using acetic acid s o l u t i o n  a t  pH 3 i n s t e a d  of  t he  

Th i s  would have pe rn ic ious  effect 

EXPERIMENTAL 

Apparatus 

Bulk oxygen (USP-grade) was passed through a moisture t rap 
kept a t  - 8OoC before e n t e r i n g  the ozonator (Welsbach Model T -  

816). The s a t u r a t e d  ozone s o l u t i o n s  were prepared by bubbling an 
ozone-oxygen stream containing 60-80 mg ozone per  l i t e r  at  a flow 
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OZONE BLEACHING 385 

rate of  1 liter per minute through the  s o l u t i o n s  i n  an absorbing 
vesse l  immersed i n  a temperature c o n t r o l l e d  ( - 0. l 0 C )  water bath. 

To avoid p o s s i b l e  i n t e r f e r e n c e  by traces of organic  and 
inorganic  Impur i t i e s  t a p  water was first d i s t i l l e d  be fo re  deioni-  
z a t i o n  followed by a second d i s t i l l a t i o n .  
had a very low heavy metal content  ( -0 .2  ppm) and a conduc t iv i ty  
of  0.495 x 

water (heavy metal content  -2.0 ppm). A l l  c o n t a i n e r s  and tub ings  
of the experimental  s e tup  were either glass or tygon. 

The t h u s  p u r i f i e d  water 

mhos as compared t o  0.138 x mhos f o r  tap 

Ozone-Concentration-UV-Absorbance a t  258 nm C a l i b r a t i o n  

Ozone s o l u t i o n s  of  va r ious  concen t r a t ions  were prepared by 
passing ozone through double d i s t i l l e d  water (ddw) a t  temperatures  
ranging f r o m  2-15OC and by d i l u t i n g  with ddw kept  a t  t h e  same 
temperature. Immediately af ter  withdrawing an a l i q u o t  f o r  UV- 

measurements a sample was analyzed iodometr lcal ly .  A l i n e a r  
r e l a t i o n s h l p  was observed up t o  a content  of  35 mg/l. 
the S t a t i s t i c a l  A ~ l y s i s  System (SAS) developed a t  North Carolina 
State Universi ty ,  t he  following l i n e a r  r eg res s ion  equat ion,  
c o r r e l a t i n g  absorbance A and concen t r a t ion  C, was computed. 

Applying 

A = 0.048 C (mg/P) = 2.333 C (mM/l) (R2 = 0.99) 

From t h i s  equat ion,  an a b s o r p t i v i t y  o f  2334 P mole-l cm-l was 
obtained and used f o r  determining the rate c o n s t a n t s  o f  ozone con- 
sumption. The UV-measurements were carried o u t  i n  Cary 15 or 
Pye Unicam SP8-100 spectrophotometers equipped w i t h  temperature 
con t ro l l ed  sample holders.  

Ozone S t a b i l i t y  

For s e v e r a l  runs t h e  pH of  the s o l u t i o n  was ad jus t ed  by 

appropriate bu f fe r  systems, such as acetic acid-sodium acetate f o r  
pH 3,  and potassium dlhydrophosphate-sodium hydroxide f o r  pH 5, 6 
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386 PAN ET AL. 

and 7 solutions.  To avoid possible  in te r fe rence  by the  ions of 
buffer systems,.the bulk of  the k ine t i c  runs were conducted w i t h  

pH 3 so lu t ions  adjusted with s u l f u r i c  or aceti! acid.At t h i s  pH, 

ozone was found t o  be reasonably stable. 
The ozone/oxygen stream was ngt allowed t o  pass through the  

absorber before a constant ozone-content was achieved, which was 
accomplished after 5 t o  10 minutes. Ozonization of so lu t ions  
were carried out  f o r  10 o r  60 minutes, then an a l iquo t  was trans-  
ferred t o  a thermostated W-cell .  The absorbance a t  A 258 mm was 
recorded i n  5 t o  10 minute in te rva ls .  

Runs i n  the  presence of heavy metal ions were carried out  
exclusively i n  pH 3 so lu t ions ,  adjusted either by acetic or sul-  
f u r i c  acid addition. The desired concentrations of metal ions  
were achieved by adding a few m l  of  a stock so lu t ion  t o  several  
hundred m l  of ozone solut ion under vigorous s t i r r i n g .  
started when half of  the volume was added. 

addition was completed,. a sample was taken fo r  spectrophotometric 
determination. 

I n  order  t o  study the effect of metal ions unobscured by the 

Timing was 
Immediately after 

possible interference by anions, the metal salts were added i n  
form OF t h e i r  su l fa tes .  
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